Frictional Force

- $\mathbf{F} = \mu \mathbf{N}$
- μ = Coefficient of friction
- N = Normal force (weight)

on horizontal surface)

Specific Gravity

SG= Density of Substance Density of water

Absolute Temperature Scale

760 mm Hg = 1 atm = 14.7 J

Normal Temperature

25 C = 77 F = 298 K = 537

Time Weighted Average

Atomic Number

The number of protons in the nucleus defines the element

1/1,000,000,000,000 = 0.000000000001= 10⁻¹² as in picometer (pm)

Per second = $\sec^{-1} = \frac{1}{\sec^{-1}}$

Liters in a meter

Electron

Negatively charged subatomic parti orbiting the nucleus of an atom

P1V1 = P2V2

At constant temperature(Kelvin or Rankine)

and Pressure is absolute

Terms and Units NR = noise reduction (dB/ft)P = perimeter of duct (in) α = absorption coefficient of the linin material at frequency of interest A = cross-sectional area of duct (in^2)

Used to predict noise reduction

Terms and Units $L_1 =$ sound pressure level (dB) I =sound intensity (W/m²) I_0 = reference sound intensity (10⁻¹² W/I Used to measure sound pressure level using a measured sound intensity and

 $\frac{\text{Terms and Units}}{\text{T} = \text{allowed exposure time (hours)}}$ L = TWA exposure (dBA) \sim Used to determine allowed noise exposure time based on a

predefined exposure limit.

Terms and Units

 $dB_0 = noise level at distance d_0 (dB)$ $dB_1 = noise level at distance d_1 (dB)$ $d_0, d_1 = distance$ (any consistent units, e.g. m)

Used to demonstrate the relationship

Terms and Units

%D = noise dose in percent C_{1...i} = exposure duration of ith sound level (hr

 $T_{1...i}$ = corresponding allowed noise exposure dura

Used to calculate the percent noise dose based c samples taken over the course of the work perio compared with the corresponding allowed nois exposure duration.

Terms and Units L_{p} = sound pressure level (dB) P = measured sound level (Pa) \mathbf{P}_{o} = reference sound pressure (20x10⁻⁶ Pa) Used to calculate sound pressure level, based on measured sound

nuccourse and a reference nuccourse of

Terms and Units

I₁ = radiation intensity at distance d₁
I₂ = radiation intensity at distance d₂
d₁,d₂ = distance from source (cm)

Used to describe how radiation intensity changes as distance from a point source increases or decreases.

 $\frac{\text{Terms and Units}}{\text{radian} = \text{an angular measurement}}$ $\frac{\text{term (rad)}}{180^{\circ} = \text{number of degrees in one-half circ}}$ $\pi = \text{the constant, pi (3.14159)}$

Used to describe the relationship between radian, angular measurement and degree

<u>Terms and Units</u> P = present value (\$) A = annual investment or payment (\$) I = interest rate n = number of years ~ Used to calculate the present value of a series of equal annual amounts.

<u>Terms and Units</u> A = annual investment or payment (\$) F = future value (\$) I = interest rate n = number of years

Used to determine the future value of an invest

Terms and Units F =future value (\$) P = present value (\$)I = interest rate **n** = number of years Used to calculate the future value of a

Terms and Units

RWL = recommended weight limit	HM = horizontal mu
DM = distance multiplier	FM = frequency mult
LC = load constant	VM = vertical multip
AM = asymmetric multiplier	CM = coupling multi

Used to determine the recommended weight limit, or the load can be tolerated by a healthy worker, over a long period of t without causing injury to the worker's lower back.

$C = 0.65 v^{0.6} (t_{\alpha} - 95)$

for CSP trainings, please contact : Vishnu Rajendran (CMIOSH, CSP, IDIP NEBOSH) S +91 6282809443

Terms and Units

t_K = temperature in degrees Kelvin (K) t_c = temperature in degrees Celsius (°C) 273.15 = conversion term for Celcius to Kelvin

Used to convert between the Kelvin and Celsius temperature scales.